
File Handling 5:
Streaming Components
by Brian Long

In the last issue we introduced the
way Delphi puts components in

form files: it uses the run time type
information (RTTI) generated for a
component’s published section to
find all the published properties,
which it then proceeds to write out
to the DFM file.

The DFM file is a Windows
resource file containing a custom
resource. It is linked into your pro-
gram by the $R compiler directive
at the top of your form unit’s imple-
mentation section. The directive
{$R *.DFM} doesn’t mean link in all
DFM files, as you might expect, but
refers to the DFM file with the same
name as this unit. The custom re-
source in the form file is an object
stream: the form object’s non-de-
fault property values and all the
non-default properties of all the ob-
jects on the form.

You can manufacture a file ex-
actly the same as a DFM file at run-
time using WriteComponentResFile
from the Classes unit, as shown in
Listing 1. I placed this in the form’s
OnClick handler and when I clicked
on the form at run-time I was given
an FRM file that exactly matched
my DFM file. Running the utility
CONVERT.EXE over both of them
gave the same text file version of
the form.

All WriteComponentResFile does is
simply construct a temporary
TFileStream and then calls its
WriteComponentRes method, using
the component’s class name (as
returned by the ClassName method)
as the resource name, and the
component as the resource.
WriteComponentRes in turn writes
a Windows resource header and
then calls the stream’s
WriteComponent method which
again delegates the hard work to
someone else. It constructs a
TWriter object and calls its
WriteRootComponent method. When
writing a form file, the form is the

root component as it owns all com-
ponents which also need to be
written to the stream, ie all the
components on the form.

Custom Component
Streaming (Version 2)
We will now return to the
STRM1.DPR program from the last
issue (also included on this issue’s
disk for easy comparison), which
defined basic objects and
streamed them by using custom
SaveToStream and LoadFromStream
methods. The idea of using compo-
nents is that we can somehow im-
prove the situation. The problem
before was that we needed to know
what objects were in the stream,

and in what order, to get them back
out again. Also, we were responsi-
ble for creating all the objects
whose data was read back in. A
form in a DFM file does not have
this requirement: all components
on the form are automatically
manufactured when the form is
read in.

As the first stage along the road
of improvement, we will simply re-
declare the TPointData structure as
a component, as shown in Listing 2.
Since components have the capa-
bility of being owned, we ensure
that the constructor takes an
owner component as a parameter.
This means we don’t need to delete
any outstanding PointData objects

{ At run-time, a form’s name property is blank. Remember there could be
 more than one instance of a form - consider MDI children. A blank name
 means no component name conflicts are likely. This sets the name back to
 what I had it as at design time }
Name := ’Form1’;
{ Visible is False at design time - this sees to that }
Hide;
{ ActiveControl was blank at design time }
ActiveControl := nil;
{ Write out a form file - UNIT1.FRM should end up the same as UNIT1.DFM }
WriteComponentResFile(’UNIT1.FRM’, Form1);
{ Unhide the form }
Show;

➤ Listing 1

TPointData = class(TComponent)
private
 FX, FY: Word;
public
 constructor CreateXY(AOwner: TComponent; AX, AY: Word);
 procedure SwapXY;
published
 property X: Word read FX write FX default 0;
 property Y: Word read FY write FY default 0;
end;
...
constructor TPointData.CreateXY(AOwner: TComponent; AX, AY: Word);
begin
 inherited Create(AOwner);
 FX := AX;
 FY := AY;
end;
procedure TPointData.SwapXY;
begin
 Tag := FX;
 FX := FY;
 FY := Tag;
end;

➤ Listing 2

28 The Delphi Magazine Issue 10

at the end of the program run,
someone else (the owner) will take
care of that.

Notice the default specifier in
the property declaration. This
specifies the value in the RTTI that
the VCL streaming mechanism will
compare the property value
against before deciding whether to
store it or not. It does not actually
give the property a default value (a
common misunderstanding) – that
job is left to the programmer. In our
case it’s easy: if the normal Create
constructor is called, FX and FY will
be zero anyway, as all object data
fields are zeroed when the object is
constructed.

We could have achieved the
same net result as the default
specifier by using the stored direc-
tive instead. Listing 3 is an alterna-
tive component definition for
TPointData that uses a Boolean func-
tion specified with the stored direc-
tive, to decide whether to store the
property in the stream or not. Note
you can also use a Boolean data field
or a Boolean constant.

As was discussed briefly last
time, a stream has a method for
writing a component’s properties,
so we could change LoadBtnClick
and SaveBtnClick as in Listing 4.

But these versions have the
same disadvantage as the old ver-
sions. We have to know which com-
ponents are in the stream and
create them ourselves. The idea
was to make the streaming mecha-
nism construct the components as
they are read from the stream. For-
tunately, a simple change to the
LoadBtnClick handler achieves this.
The while loop changes to

while Stream.Position <>
 Stream.Size do
 PointList.Add(
 Stream.ReadComponent(nil));

and now the stream (or more cor-
rectly the TReader it uses, where a
TReader, like its compatriot the
TWriter, are both descendants of
TFiler) finds the name of the class
in the stream and attempts to make
an instance of the class. However,
all that’s in the stream is a string,
and that is not sufficient to make a
new class with. It searches a list of

classes it knows about to see if it
can find a class reference whose
name matches the string, but in
this case it will be unsuccessful.

For custom objects that are not
already dealt with by a form, we
need to register the classes. In the
initialization section of the form
unit I have added

RegisterClass(TPointData);

If I needed to register several
classes, I would have used

RegisterClasses([TPointData,
 SecondClass, ThirdClass]);

The finished project is STRM2.DPR,
but it is not yet done with. If you
compare a stream written by
STRM1.EXE with one written by
STRM2.EXE you will see that the
latter’s is considerably larger. All
that is stored in the first version’s
file are numbers. In the latest
version we have information to
allow the streaming mechanism
to construct new objects. Close

TPointData = class(TComponent)
private
 FX, FY: Word;
 function IsX: Boolean;
 function IsY: Boolean;
public
 constructor CreateXY(AOwner: TComponent; AX, AY: Word);
 procedure SwapXY;
published
 property X: Word read FX write FX stored IsX;
 property Y: Word read FY write FY stored IsY;
end;
...
function TPointData.IsX;
begin
 Result := X <> 0;
end;

function TPointData.IsY;
begin
 Result := Y <> 0;
end;

➤ Listing 3

procedure TForm1.SaveBtnClick(Sender: TObject);
var
 Stream: TFileStream;
begin
 Stream := TFileStream.Create(DataFile, fmCreate);
 try
 for Loop := 0 to PointList.Count - 1 do begin
 Pt := TPointData(PointList.Items[Loop]);
 Stream.WriteComponent(Pt);
 end;
 finally
 Stream.Free;
 end;
 ClearPoints;
 PaintBox1.Invalidate;
end;

procedure TForm1.LoadBtnClick(Sender: TObject);
var
 Stream: TFileStream;
begin
 ClearPoints;
 Stream := TFileStream.Create(DataFile, fmOpenRead or fmShareDenyWrite);
 try
 while Stream.Position <> Stream.Size do begin
 Pt := TPointData.Create;
 Stream.ReadComponent(Pt);
 PointList.Add(Pt);
 end;
 finally
 Stream.Free;
 end;
 Invalidate;
end;

➤ Listing 4

June 1996 The Delphi Magazine 29

examination of this information
shows that for each object in the
stream there is a signature string,
TPF0 (Turbo Pascal Filer version 0),
a class name and some binary data
representing the property values.
There are also symbols indicating
the size of each particular value
(these are the ordinal values of
some members of the Classes unit
enumerated type TValueType,
vaInt8 and vaInt16).

Version 3
Every component that gets explic-
itly written out is called a root com-
ponent. Each root component is
preceded by the signature TPF0, so
that some simple validation can be
performed on streams. The only
way to avoid having this written for
each point object would be to write
all the points out at the same time,
instead of iterating over all of them.
We are unable to write the list out
as it is based on type TObject, not
TPersistent (or TComponent) and
anyway it knows nothing about the
items it maintains references to,
other than their addresses.

Instead, for the next version we’ll
replace the TList version of
PointList with a component to
hold the points. There is no need to
worry about adding list functional-
ity, a component already has as
much as we need, so TPointList
can be based on type TComponent.
When a component becomes the
owner of another component, the
owned component goes into an ar-
ray property called Components and
another property which is called
ComponentCount gets incremented.

There are several benefits to
doing this. Since the list is a com-
ponent, we can get it owned by the
form, thus relinquishing our re-
sponsibility for destroying it. When
we wish to write all our points out,
providing we make the list own the
points, we can simply write the list
component out, and similarly for
reading. This means only one filer
signature will be written and read.
Also, the ClearPoints method,
which empties the list and de-
stroys all the points, can now be-
come a simple call to the PointList
method DestroyComponents, which
will destroy all that it owns, ie all

the points. The TPointList class in
all its glory, along with some of the
methods from STRM3.DPR, are
given in Listing 5. Indeed, there was
no real need to make a new class,
TComponent would have been fine on
its own.

Version 4
There’s one more thing to mention
about standard component

streaming and it again relates to
type TPersistent. A TWriter object
will write the class name, instance
name and properties of a compo-
nent out to a stream. Sometimes it
isn’t desirable to turn everything
that should be streamed into a
property. If this is the case, there is
another option available to allow
storage of your data. TPersistent
has a virtual method called

TPointList = class(TComponent)
end;
...
procedure TForm1.PaintBox1Paint(Sender: TObject);
begin
 for Loop := 0 to PointList.ComponentCount - 1 do begin
 Pt := PointList.Components[Loop] as TPointData;
 if Loop = 0 then
 PaintBox1.Canvas.MoveTo(Pt.X, Pt.Y)
 else
 PaintBox1.Canvas.LineTo(Pt.X, Pt.Y)
 end;
end;
...
procedure TForm1.SaveBtnClick(Sender: TObject);
var
 Stream: TFileStream;
begin
 Stream := TFileStream.Create(DataFile, fmCreate);
 try
 Stream.WriteComponent(PointList);
 finally
 Stream.Free;
 end;
 ClearPoints;
 PaintBox1.Invalidate;
end;
...
initialization
 Randomize;
 RegisterClass(TPointData);
end.

➤ Listing 5

TPointData = class(TComponent)
public
 X, Y: Word;
 constructor CreateXY(AOwner: TComponent; AX, AY: Word);
 procedure SwapXY;
 procedure DefineProperties(Filer: TFiler); override;
 procedure ReadData(Reader: TReader);
 procedure WriteData(Writer: TWriter);
end;
...
procedure TPointData.DefineProperties(Filer: TFiler);
begin
 { Not calling inherited version cos I don’t want any properties bar X and
Y stored }
 Filer.DefineProperty(’XY’, ReadData, WriteData, X or Y <> 0);
end;

procedure TPointData.ReadData(Reader: TReader);
begin
 X := Reader.ReadInteger;
 Y := Reader.ReadInteger;
end;

procedure TPointData.WriteData(Writer: TWriter);
begin
 Writer.WriteInteger(X);
 Writer.WriteInteger(Y);
end;

➤ Listing 6

30 The Delphi Magazine Issue 10

DefineProperties. After all the real
properties have been written, a
TWriter calls the DefineProperties
method of a TPersistent derivative,
which allows it to define fake prop-
erties and dictate how they’re
written out.

To demonstrate, STRM4.DPR
has had the TPointData properties

removed, and X and Y are once
again public data fields. The
DefineProperties method has been
overridden (see Listing 6) to define
one fake property called XY. Inside
a component’s DefineProperties
method, you normally call the
inherited method, but this one
elects not to. In this case, the only

property I want on the stream is my
new XY property and nothing else.

To define a new property you
call either DefineProperty or
DefineBinaryProperty, each of
which is a method of the passed-in
TFiler object. Normally the former
is used, although graphic objects
use the latter. DefineProperty takes
a property name, a method that
can read the property, a method to
write the property and also a
Boolean expression that dictates
whether there is any data to store.
The only combination of two val-
ues OR-ed together that yield a zero
are zero and zero, hence my ex-
pression is X OR Y <> 0. As the
listing shows, ReadInteger can be
used to read a value of any integer
type, and WriteInteger will write
any integer type.

Saving A Desktop File
We can take advantage of this com-
ponent streaming ability to add a
desktop-saving feature to our pro-
grams. The project DESKTOP.DPR
does this (see Figure 1). When the
program exits, it saves the edit box
and list box to a stream, which we
can call our desktop file. When the
program starts up, after all compo-
nents have been read in and set up
from the form, the overridden
Loaded method reads the proper-
ties of the edit and list box back
from the file. The net effect is that
each time you run the program, it
looks just like it did when you last
closed it, data and all. The Loaded
method and the form’s OnClose
event are shown in Listing 7. Also
included in that listing is the code
for the Delete button. Delete
removes the currently selected
items from the list box, and caters
for both single-selection and
multiple-selection list boxes.

Making Your Own Run-Time
Resource Stream (Version 5)
Earlier, we saw how to make a DFM
file, just like the ones Delphi gener-
ates. Indeed we can make a
Windows resource file filled with
components any time we like, but
what’s the point? Well, going back
to the discussion in the last issue,
about object streams allowing you
to remove initialisation from your

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 with TFileStream.Create(DataFile, fmCreate) do
 try
 WriteComponent(ItemEdt);
 WriteComponent(ItemsLst);
 finally
 Free;
 end;
end;

procedure TForm1.Loaded;
begin
 inherited Loaded;
 try
 with TFileStream.Create(DataFile, fmOpenRead or fmShareDenyWrite) do
 try
 ReadComponent(ItemEdt);
 ReadComponent(ItemsLst);
 finally
 Free;
 end;
 except
 { Smother desktop not found exception as it won’t be found on the first run }
 on EFOpenError do {nothing};
 end;
end;

procedure TForm1.DelBtnClick(Sender: TObject);
var Loop: Byte;
begin
 with ItemsLst, Items do begin
 BeginUpdate;
 if not MultiSelect then
 Delete(ItemIndex)
 else
 for Loop := Pred(Count) downto 0 do
 if Selected[Loop] then
 Delete(Loop);
 EndUpdate;
 end;
end;

➤ Listing 7

➤ Figure 1

June 1996 The Delphi Magazine 31

program, it can be left to another
program to set a stream up and
your program can then read it. We
will test out the theory.

Delphi generates an object re-
source file and your program reads
in the resource at run-time. We will
again amend the stream program,
developed through this article, to
do the same thing with some cus-
tom objects. First things first, we
need a set-up program. SETUP.DPR
on the disk will generate a resource
file with a list of five point objects
in it. Because the file format of
Windows resources changes be-
tween 16- and 32-bit, some condi-
tional compilation is used to
generate a uniquely named file. All
the hard work is done in the Loaded
method (see Listing 8), called when
the form has read itself in.

The five point objects draw out a
square. The plan is that when the
stream program starts up, it will
read in its point list from a re-
source, rather than constructing
one and waiting for the user to gen-
erate some random points. This
means that as soon as the form
shows on the screen, a square will
be drawn on it.

The stream program will be an
extension of STRM3.DPR – the one
with the real properties, rather
than faked ones. There are just a
few changes to be made (see
Listing 9). Firstly, we need to link
the resource into the program. A $R
directive does that. Then we need
to amend the initialization sec-
tion of the unit, so that both
TPointData and TPointList are reg-
istered – we’re going to get the
streaming mechanism to construct
the list and the points. Lastly, we
change the code in the form’s On-
Create handler. It currently creates
a TPointList object, instead we will
call ReadComponentRes to read it in.

A rather pleasing side-effect of
writing Delphi objects into re-
sources is that the CONVERT.EXE
program will now translate the bi-
nary file into a text file. A command
line of

CONVERT POINTS.R16

yields the text shown in Listing 10.
Of course, like a form, this can be

manually edited and changed back
to a binary file with:

CONVERT POINTS.TXT
REN POINTS.DFM POINTS.R16

Delphi 2
And that should have been that...
but as I found to my horror when I
checked all these examples in
Delphi 2, several of them didn’t
work. STRM3, STRM4, STRM5 and
SETUP failed to store any points in
their streams. The common factor
between these applications is that
they all store the TPointList on the
stream and expect all its owned
components to be saved. In Delphi
1 this was the case because the
TWriter object stores the root com-
ponent’s owned components, pro-
viding they have no parent to do it
for them. It finds that out by calling
the HasParent function, which by
default returns False.

In Delphi 2 the TWriter object
does not do this. Drat. However, in
both versions the TWriter does give

a component an opportunity to
write all (or some, or none of) the
components it owns by calling one
of the component’s methods.
Unfortunately for us, the method,
and approach to its calling differs
between versions. Apparently,
whilst adding the support for

const
{$ifdef Windows}
 ResFile = ’Points.R16’;
{$else}
 ResFile = ’Points.R32’;
{$endif}

procedure TForm1.Loaded;
begin
 inherited Loaded;
 PointList := TPointList.Create(Self);
 Pt := TPointData.CreateXY(PointList, 10, 10);
 Pt := TPointData.CreateXY(PointList, 366, 10);
 Pt := TPointData.CreateXY(PointList, 366, 191);
 Pt := TPointData.CreateXY(PointList, 10, 191);
 Pt := TPointData.CreateXY(PointList, 10, 10);
 WriteComponentResFile(ResFile, PointList);
 MessageDlg(’Job done!’, mtInformation, [mbOk], 0);
 Application.Terminate;
end;

➤ Listing 8

...
{$ifdef Windows}
 {$R Points.R16}
{$else}
 {$R Points.R32}
{$endif}
...
procedure TForm1.FormCreate(Sender: TObject);
begin
 PointList := ReadComponentRes(TPointList.ClassName, nil) as TPointList;
end;
...
initialization
 Randomize;
 RegisterClasses([TPointList, TPointData]);
end.

➤ Listing 9

object TPointList
 object TPointData
 X = 10
 Y = 10
 end
 object TPointData
 X = 366
 Y = 10
 end
 object TPointData
 X = 366
 Y = 191
 end
 object TPointData
 X = 10
 Y = 191
 end
 object TPointData
 X = 10
 Y = 10
 end
end

➤ Listing 10

32 The Delphi Magazine Issue 10

TPointList = class(TComponent)
 protected
{$ifdef Windows}
 procedure WriteComponents(Writer: TWriter); override;
{$else}
 procedure GetChildren(Proc: TGetChildProc); override;
{$endif}
 end;
TPointData = class(TComponent)
 ...
{$ifdef Windows}
 protected
 function HasParent: Boolean; override;
{$endif}
 ...
end;
...
{$ifdef Windows}
procedure TPointList.WriteComponents(Writer: TWriter);
var Loop: Integer;
begin
 { inherited version does nothing - no need to call it }
 for Loop := 0 to ComponentCount - 1 do
 Writer.WriteComponent(Components[Loop]);
end;

{$else}
procedure TPointList.GetChildren(Proc: TGetChildProc);
var Loop: Integer;
begin
 { inherited version does nothing - no need to call it }
 for Loop := 0 to ComponentCount - 1 do
 Proc(Components[Loop]);
end;
{$endif}
...
{$ifdef Windows}
function TPointData.HasParent: Boolean;
begin
 Result := True;
end;
{$endif}
...

➤ Listing 11

procedure TForm1.AddToList(Child: TComponent);
begin
 with Child do
 Listbox1.Items.Add(Format(’%s: %s (%s)’,
 [Name, ClassName, ClassParent.ClassName]));
end;

procedure TForm1.Button1Click(Sender: TObject);
var Loop: Integer;
begin
 Listbox1.Items.Clear;
{$ifdef Win32}
 GetChildren(AddToList);
{$else}
 for Loop := 0 to ComponentCount - 1 do
 AddToList(Components[Loop]);
{$endif}
end;

➤ Above: Listing 12 ➤ Below: Listing 13

procedure FileCopy(const InFile, OutFile: String);
var InStream, OutStream: TFileStream;
begin
 InStream := TFileStream.Create(InFile, fmOpenRead + fmShareDenyWrite);
 try
 OutStream := TFileStream.Create(OutFile, fmCreate);
 try
 OutStream.CopyFrom(InStream, 0);
 FileSetDate(OutStream.Handle, FileGetDate(InStream.Handle));
 finally
 OutStream.Free;
 end;
 finally
 InStream.Free;
 end;
end;

inherited forms, Borland made a
few architectural changes to the
streaming. Sounds like a job for
conditional compilation to me. The
version-proof way of writing a com-
ponent, and getting all the owned
components to be written to a
stream, is exemplified by the code
in Listing 11. All the failing
examples have been modified to
include the various changes for the
files on this month’s disk.

Firstly, in 16-bit, the HasResult
virtual method (of the owned com-
ponent) needs overriding to return
True, to suggest that the Delphi 1
TWriter does not write them out
(we’d wind up with two copies at
the end otherwise).

Secondly, in 16-bit, the owner
needs a WriteComponents method.
This is passed a TWriter, and the
component can call the writer’s
WriteComponent method for any
components that need streaming.

Lastly, in 32-bit, the owner needs
a GetChildren method. This is
passed a parameter of a procedural
type, ie a reference to a TWriter
method. For each component that
needs streaming, you call that
method and pass the component
as a parameter.

This change from using
WriteComponents to GetChildren is a
good idea. It provides a general
iterator. You can iterate through all
the components that the owner is
interested in and have any old
routine of yours called for each
one, with the component passed as
a parameter. The only restriction is
that your routine must be some
procedure method that takes only
one parameter: a component.

An example project that shows
this is ITERATE.DPR. When Button1
is pushed, Listbox1 is filled with
information about each compo-
nent on the form, including its
name, class and ancestor. Listing
12 shows the 32-bit and 16-bit ways
of achieving this.

File Copying
Before finishing off, there is an
aspect of stream usage I couldn’t
squeeze into last issue – that of
using streams to copy files.

Two file streams in combination
can be used to copy a file, as shown

34 The Delphi Magazine Issue 10

in Listing 13. Note that the code
takes advantage of the fact that
CopyFrom takes a zero as the byte
count parameter to mean “copy
the whole stream.”

This compares with the often
used way of doing it with un-typed
file variables and BlockRead, as in
Listing 14.

Next Time
In the next issue we will turn our
attention to writing text file device
drivers. Never heard of them
before? Well you can find out all
about them next month.

Brian Long is a freelance Delphi
consultant and trainer based in
the UK. He is available for book-
ings and can be contacted by email
on 76004.3437@compuserve.com

Copyright ©1996 Brian Long
All rights reserved.

procedure FileCopy(const InFileName, OutFileName: String);
const
 BufSize = 8 * 4096; { 32kb }
type
 PBuffer = ^TBuffer;
 TBuffer = array[1..BufSize] of Byte;
var
 Size: Cardinal;
 Buffer: PBuffer;
 InFile, OutFile: File;
begin
 if InFileName = OutFileName then
 raise EInOutError.Create(’File cannot be copied onto itself’)
 else begin
 Buffer := nil;
 Assign(InFile, InFileName);
 Reset(InFile, 1);
 try
 Assign(OutFile, OutFileName);
 Rewrite(OutFile, 1);
 try
 New(Buffer);
 repeat
 BlockRead(InFile, Buffer^, BufSize, Size);
 BlockWrite(OutFile, Buffer^, Size)
 until Size < BufSize;
 FileSetDate(TFileRec(OutFile).Handle,
 FileGetDate(TFileRec(InFile).Handle));
 finally
 if Buffer <> nil then
 Dispose(Buffer);
 CloseFile(OutFile)
 end;
 finally
 CloseFile(InFile);
 end
 end
end;

➤ Listing 14

June 1996 The Delphi Magazine 35

	Custom Component Streaming (Version 2)
	Version 3
	Version 4
	Saving a Desktop File
	Making Your Own Run-Time Resource Stream (Version 5)
	Delphi 2
	File Copying
	Next Time

